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Exact identities are derived for a family of models including (a) a domain wall 
in a random field Ising model (RFIM), and (b) the  random anisotropy X Y  
model in the no-vortex approximation. In particular, the second moment of 
thermal fluctuations is not affected by frozen randomness. It is checked in a one- 
dimensional model that higher moments are on the contrary strongly enhanced. 
Thus, thermal fluctuations are strongly non-Gaussian. This reflects excursions 
between remote potential wells in the phase space. It is shown exactly that the 
Imry-Ma argument yields a correct evaluation of the field-induced fluctuations 
for the one-dimensional model. 
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1. GENERAL MODELS CONSIDERED HERE 

We consider models defined by the following Hamiltonian: 

= k Y~ J u i z , -  z+) 2 + Z Vi(z/) (1) 
O i 

where zi are classical (commuting) continuous variables defined at the site i 
of a d-dimensional (e.g., cubic) Bravais lattice. The Ja are fixed coefficients, 
which have the symmetry of the lattice, e.g., J/j = J if i and j are neighbors, 
otherwise J u = 0 .  Finally the Vi are independent random potentials. 
According to the choice of Vi, (1) can represent a whole series of systems. 
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(a) A first possibility is 

Vi(z ) = A cos(z - ~0i) (2) 

where ~0i (0 < ~Pi < 2z) is a random parameter with a uniform probability. 
Then (1) can represent an incommensurate charge density wave system 
with impurities in the approximation where vortices or vortex lines are 
ignored. This model was introduced by Efetov and Larkin, ~1) who gave an 
iteration solution, which would be exact if the iteration method were not 
questionable.~2'12) 

(b) Another possible choice 4 describes a Bloch wall in a ( d +  1)- 
dimensional ferromagnet with weak bond randomness (random bond Ising 
model, RBIM). Here zi is the height of the wall above or below site i. The 
wall is assumed to have no overhang. As stated above, zi is treated as a 
continuous variable. However, in order to define Vi, it is appropriate to 
introduce the interatomic distance a. Then, if na < z < (n + 1)a, Vi(z)= Vin, 
where the V;n are independent random variables with, for instance, a 
Gaussian distribution and 

Fin Vjm = V 2  (~ij(~nm (3) 

Places with Vin < 0 correspond to weaker bonds and attract the wall. The 
model makes sense only below the transition temperature Tc and above the 
lower critical dimension defined by D = 5/3. (19) 

(c) Another application we want to give of model (1) is a domain 
wall in a random field Ising model (RFIM). (4) Again z~ is the height of the 
domain wall in the ( d +  1)th direction, but now 

N"/a 
V~(z~) = ~ HinS~n (4) 

n = N"/a 

where N" is the size of the system in the ( d +  1)th dimension and Sin is the 
spin at site (i, n): 

Sin = - 1  if n<~z~/a 
(5) 

Sin = 1 if n > z~/a 

The independent random fields H~n have, e.g., a Gaussian distribution and 

HinHjm = aH2 60.f,~m (6) 

Again the model makes sense only below Tc and above the critical 
dimension, which is believed to be dct + 1 = D d =  2. ~4-6) The factor a in (6) 

4 See Ref. 3 for a review of interface wandering. 
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has been introduced in order to ensure the possibility of considering the 
continuum limit a ~ 0, Ho = const. 

(d) Another possibility is Nattermann's (7) "random rod model," 
which has the advantage of being exactly solvable. It is now assumed that 
the Hin in (4) depend only on i, not on n. Then 

L/a 
V~(zi)= K~a Y' Sin= Kiz~ (7) 

n = --L/a 

where the independent random variables K~ satisfy K~Kj = 6~/K g. 
In Sections 2 and 3 general identities will be derived. In the following 

sections they will be applied to system (c), the RFIM. In Section 4 a one- 
dimensional model is studied and lower bounds are derived for the 
moments of thermal fluctuations, showing the non-Gaussian character of 
these fluctuations. In Section5 the D-dimensional RFIM is treated 
approximately. In Section 6 the asymptotic behavior of the field-induced 
fluctuations is determined for the one-dimensional model, extending a zero- 
temperature treatment (1~ and showing the validity of the Imry-Ma 
argument at low T. 

2. THE IDENTITIES 

We now derive the identities that constitute the essential result of this 
paper. They are based on the partition function Z~ associated with the 
modified Hamiltonian 

~ '  = ~ -- T ~  2iZ i 

The mean square thermal fluctuations are related to Z~. by the formula 

(zizj)  - ( z i ) ( z j )  = ( ~  ln Z;~)~= ~ (8) 

where bars and brackets denote the ensemble average and the thermal 
average, respectively. More generally, all derivatives of ln Z~ are 
correlation functions. For instance, 

(83 In ZffOAt 02j 82t)~=o = ( ( z~-  (zi))(zj - ( z j ) ) ( z l -  ( z l ) ) )  (9) 

(84 ~ Z ~./82 i 82j 8;~ 182m)~,= 0 

= ((z~- (z~))(zj- (zjS)(z~- (z~))(zm- ( z , . ) ) )  

-- <(Zi--  <Zi>)(Zj--  < Z j > ) ) < ( Z I - -  <Zl>)(Zm--  <Zm>)> - - 2 0  (10) 

where " 2 ~ "  means "two permutations." 
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As will be seen, in Z~ is a quadratic function of the 2's, so that all 
derivatives vanish beyond second order and an infinity of combinations of 
the correlation functions [in particular (9) and (10)] vanish. To see that, 
we write ~ ' ,  using (1), as 

~ '  = �89 Jok [ z , -  T2k/Jokl2+~ V(z,)-�89 IAkl2/Jok (11) 
k i k 

where zk and 2k are the Fourier transforms 

1 
z~ = - ~  ~ zi exp( iki " Ri) 

2 k = ~ N N ~  2i exp(iki" Ri) 

Jok = Z J~{ 1 - exp[ik~ �9 ( R i -  Rj)] } 
J 

where N is the number of sites i, j. If one defines ~ok = T2k/Jog, ~ = Zk -- q)g, 
and U(~)=  V((i+ ~oi), one can write (1t) as 

~ ' =  �89 r, Jo.(~i-~j)2 + Z U(~i)-�89 Z I,~12/Jok (12) 
U i k 

The partition function that corresponds to (12) and to a given dis- 
tribution of the V's is 

Z~({ V})= exp ( � 8 9  [)Ck[2/Jok)Z({U}) 
where Z is the partition function corresponding to )~ = 0 and to the poten- 
tials U((i)= V(~i+~0~). Let the Efetov-Larkin model (2) be considered 
first. There all variables ~i and z~ are continuous and the random fields U 
and V have the same probability distribution, so that the average value of 
In Z({ U}) is the same as that of In Z({ V}), i.e., independent of the 2's. We 
have 

In Za = �89  I~,12/Jo, + In z (13) 
k 

All derivatives of (13) of order 3 or higher with respect to the s 
vanish, in particular (9) and (10). The second derivative yields, according 
to (8), the second moment of thermal fluctuations, 

< [zk-  <zk>[2> : T/Jog (14) 
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The long-wavelength limit k ~ 0 is particularly interesting, namely 

( I z , -  ( z , ) l  2 ) = r / J k  2 (15) 

The Boltzmann constant is taken equal to 1. Relations (13)-(15) also apply 
to the continuum version of the Ising model defined by (5) in the limit 
a ~ 0 (or for small k ~ 0), provided the domain walls are roughened by the 
random field. This occurs for a space dimension D = d +  1 < DCR = 5. ~5'6) In 
tile proper lattice version of the Ising model, DCR = 3. (8,9) Summary for 
three-dimensional people: relations (13)-(15), and the consequences for 
higher correlation functions, apply to the three-dimensional Ising model 
for small k, and to the Efetov Larkin model (2) for any k. 

In the case of the RBIM (model b of Section 1), D c=5 /3  and 
DcR= 5,~3) SO that (13) and (14) are expected to hold for 1 < D < 5 .  

The theorem concerning the higher order correlation functions can be 
stated in the following way, using the expression of cumulants in terms of 
the moments (z~zjzl...): the mean value (averaged on the random fields) 
of these "thermal" cumulants should be zero except for the second order 
cumulants. All averaged odd moments and cumulants vanish for symmetry 
reasons. Even cumulants start with 

<zi, z,2...zi2,>-<zi, z,2...zi2,_,> ( z i 2 , > - ( p - 1 ) O +  . . . .  0 (16) 

These relations do not imply a gaussian distribution of the z's since for 
instance in the second term of (16), ( . . . ) ( . . .  ) is not equal to 
( . - - )  ( . . . ) .  It will be seen in Section4 that thermal fluctuations 
( z i -  ( z i ) )  have much broader wings than a gaussian. 

Relation (15) has already been obtained by Dotsenko and 
Feigelman (15) together with other equalities which we do not believe to be 
correct. Namely, in Ref. 15, we agree with (2.14), but not with (2.13). (2'11'12) 
Also, relation (15) may be regarded as a special case of more general 
relations (16'1vl valid for models where the interaction term is not harmonic. 

3. I D E N T I T I E S  IN T H E  R E P L I C A  L A N G U A G E  

This section reproduces the results of the preceding one in the 
language of replicas. 

The average of In Z corresponding to (1) may be written as 

In Z = lim (Z n - 1 ) 
n ~ 0  
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and 

f ] Z n =  D V P ( { V } ) e x p  - f l  Jt~({zi~}) (17) 

where the index c~ refers to n independent replicas. 
The replica trick is not very useful for the Efetov-Larkin model (2), 

but can be applied to formula (4) because it is a linear function of the ran- 
dom field. Assuming a Gaussian distribution of the independent random 
variables Hi,,  one can integrate those variables and obtain 

Z ---~ = f Dz  exp( - fl~") (18) 

where 

and, for [z[ ,> a, 

: ~  = ~ ~ J~(z7 - z~) 2 + ~ W(z7 - z'~) (19) 
ty~ iny 

W(z)  = ( H~/T)  Izl (20) 

Under the effect of length rescaling, for instance, this interaction may 
be expected to renormalize into an analytic function, possibly tractable by 
perturbation theory. For example, 

W(z)  = (H2 /T) ( z  2 + a2) m (21) 

Model (b) of Section 1 can also be put into the replica form. The 
function W(z)  is zero except for Jzl < a, and may be approximated by a 
Gaussian 

m( 2 ) = - ( V 2 / T )  exp( - z2 /a 2 ) (22) 

The random rod model is somewhat different. Equation (19) should be 
replaced according to (7) by 

where 

I K 2 
= 4 ~ J  (z ~ z=q2_ On 2~z~2 ~" ' -  J" g-~ + ~ W(z~-z~) 

O. ~ . i o : 7  

(23) 

W(z)  = (K~/4T) z 2 (24) 

Now the calculation proceeds as in Section 2. We add to (19) a term 

3J7 ~ = - T ~  2iz~' (25) 
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The transformation 

yields 

~ = z~ -- T2k/Jok 

o (26) 

Therefore, all derivatives of In Z)~ with respect to 2k vanish beyond 
second order. This can be translated into equalities for the correlation 
functions. For instance, using (10), one finds 

c~ y ) . . u  2 ,u 
- (Z,Zm> 20):0 (27) (<ziz)ztz.> <zrz]> 

z72# 

Second-order derivatives yield 

nT nT 
<z~zt~> Jok d kz (28) 

sT 

where the approximate expression holds for small k. Insertion into (27) 
yields 

Equality (27) and analogous equalities valid for higher moments are 
satisfied for a Gaussian distribution of the variables 

= ~ ~ (29) yi zi 

It can be checked that the equalities in the replica language are the 
same as those derived in Section 2. One can escape the replica space by the 
following formulas (derived by averaging the z's before random fields): 

2 (Z~Z~>n~O=II<ZiZ]> +n(n--  1)(zi>(zj> 
~xy 

ocV)., u <ZiZjZIZm>n~O=YI<ZiZjZIZm> + n ( n -  I )[ <ZiZj><ZIZm> J - 2 0 ]  

+ n(n - l)[<ZiZjZl><Zm> + 3 0 ]  

+ n ( n -  1)(n-2)[(zizj><zl><zm> + 5 ~ ]  

+ n(n - 1)(n - 2)(n - 3)<zi> <zj> (zl> <Zm > 
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Equality (28) is satisfied if 

T TA k 
( z ~ z E k ) ,  Jog + nAk 6~ + Jok(Jo  k -1- nAk) (30) 

and conversely it can be shown that (30) is a consequence of (28). Here A k 
is an unknown quantity, except in the random rod model, in which 

TA k = Kg/4 (31) 

is independent of k. Since Jok ~ Jk2 for small k, the second term of  (30) 
dominates the first one in the limit n ~ O, k ~ 0. This qualitative result is 
probably true for the RFIM as well, as will be seen in the next section. 
Thus, the second moment (28) of Yk is remarkably small. The factors n and 
T are expected, but it was not expected that the k dependence is charac- 
terized by a more weakly divergent factor 1/k 2, rather than by TAk/k 4 as in 
(3o). 

Since the anharmonic perturbation in (19) is a function of z ~ -  z~, it is 
of interest to consider the fluctuations of z~-zf~. The second moment is, 
according to (30), 

2T 
( I z ~ - z ~ 1 2 > .  - (32) 

Jok + nA k 

This is again small for n = 0 .  But higher moments are presumably not 
small. For  instance, 

< (z~ - z ~ ) ( z ;  - z f ) ( z ~  - z ~ ) ( z ~  - z ~ )  > .  = o 

= 2 < ( Z i - -  < Z i > ) ( Z j - -  < Z j > ) ( Z  I - -  <ZI>)(Z m --  < Z m > ) >  

- 4[ ( ( z , -  ( z , > ) ( z j -  (Zj>)(ZzZm > + 2 0 ]  (33) 

The second term on the right-hand side is large because of the factor 
(Z~Zm), which does not vanish even at T = 0 .  Thus, either the left-hand 
side of (33), the first term of the right-hand side, or possibly both are also 
large. This suggests that the second term in (19) probably cannot be 
treated by perturbation theory. 

4. A T O Y  M O D E L  

A one-dimensional model will now be treated, where some exact 
results can be derived. (1~ It will be seen that the non-Gaussian dis- 
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tribution of thermal fluctuations is related to metastable states. Our toy 
model is characterized by a single real variable z and a Hamiltonian 

~=�89 zz+ Z Hp (34) 
p < z/a 

where the independent random variables kip satisfy 

HpHp,  = (~ pp, H 2 a  (35) 

The model is analogous to that defined by (4)-(6) if one adds a term 
l g  Z z2 in (1). The dimension is d =  0 or D = 1. The term gz2/2 does not 
modify the calculations of Sections 2 and 3 except that Joe should be 
replaced by g, and all indices k, i, j, etc., of z disappear. For  instance, (14) 
should be replaced by 

( ( Z -  ( Z ) )  2 ) ~- Zig (36) 

and (10) yields 

( (Z -- ( Z ) )  4 ) = 3 ( ( z -  <z))2) 2 (37) 

The high-temperature region, where the fluctuation ~Z 2 ) is of order 
T/g, may be handled by perturbation theory. We are interested here in the 
low-temperature region. According to an argument of Imry and Ma, (4) 
(z  2) is such that the mean square of both terms of (34) have the same 
order of magnitude: g ( z  2 ) "~ Ho(z2) TM, or 

( Z2 ) ,~ ( Ho/g  ) 4/3 (38) 

The temperature is assumed to be so low that (38) is much larger than 
(36). Also, (38) must be much larger than a, otherwise the continuum 
approximation could not be used. 

The result (38) can actually be derived exactly (]~ at least at T =  0, 
since a lower and an upper bound of ( z  2) can be obtained, which both are 
equal t o  (Ho/g) 4/3 times a numerical constant. The derivation is given in 
Section6, extending a previous calculation (m) to nonvanishing tem- 
peratures. Relation (38) is actually still controversial. For  instance, 
Minchau and Pelcovits ('8) give a Bogoljubov inequality which violates 
(38). [We believe that their inequality is only correct when the number n of 
replicas is larger than 1. Otherwise they are not entitled to go from their 
relation ( t6)  to their relation (17).] 

Thermalfluctuations can now be estimated. Let the minimum E of (34) 
for z > 0 correspond to z = zl and the minimum E2 for z < 0 correspond to 
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Z = Z 2. If lE~-  E2I < T, the thermal fluctuation ((~Z 2 ) is of order (Z 1 - -Z2)  2, 
which is of order (Ho/g) 4/3 according to (38). On the other hand, the 
typical order of magnitude of El and E2 is -Ho(Ho/g) ~/3, as can be seen 
from the Imry-Ma argument (4~ or proved exactly. (1~ Thus, the probability 
that [El -- E2[ < T is of order 

Pr ~ (T/Ho)(Ho/g) - ~/3 (39) 

If one multiplies PT by (zl--Z2) 2, one  finds something of order T/g, 
the exact second moment (36). This means that large thermal fluctuations, 
Z--{Z)~ {Z2) 1/2, yield a finite contribution to the second moment. Of 
course weaker fluctuations (e.g., corresponding to two relative minima z~, 
z'l with identical sign) also contribute (Fig. 1). 

The above argument yields upper bounds for higher moments as well. 
We have 

( ( z - ( z ) ) 2 P )  ~PT(Xl-X2)2P'~(T/Ho)(Ho/g) (4p-1~/3 (40) 

At low temperature this is much larger than [ ( ( z - ( z ) ) 2 ) ]  p. This 
reflects the strongly non-Gaussian shape of thermal fluctuations. 

5. DOMAIN WALLS IN THE D-DIMENSIONAL RFIM 
( 2 ~ < D = d + l  < 5 )  

The most natural method to treat the RFIM is the renormalization 
group. Rescaling the lengths, i.e., dividing N by b Id, would hopefully con- 

H 

"~ ~176176176176176176176 

I 
A , B 

I 

Fig. 1. The Hamil tonian {34). At finite temperature the probability that a secondary 
min imum B exists, with an energy difference ~ ( B )  - ~ ( A )  < k B T, but  far from the absolute 
min imum A, cannot  be ignored. Its contribution to higher moments  is large. 
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serve the forms (1) and (4) (6), at least with a good approximation. Of 
course the parameters g, H0, and a are modified. However, this program 
was never carried out in a satisfactory way. The simplest approximation, 
possibly exact, (12'13) is the following. ~5'6/ 

1. J should be replaced by Jl=Jb(d-2~t as in the absence of random 
field. 

2. H~ should be replaced by the mean square random field in a slice 
of volume btd 

Ho ~ Hi = Ho btJ/2 

3. The renormalization of a is probably not crucial for static proper- 
ties. 

An alternative picture is a mere adaptation of the Imry-Ma 
argument. (14) The domain wall is argued to consist of bumps of area b ~d, 
the heights z of which are the degrees of freedom of the system. This picture 
is simpler, but equivalent to the renormalization group picture if one 
neglects the interaction between bumps. Then each bump is represented by 
Hamiltonian (34) with g=J l  and Ho replaced by Hr. Formula (38) then 
yields the well-known result (14) 

(22) ,~, ( H o / j ) 4 / 3  b 2 ( 4  - d)l/3 (41) 

for the mean square height of a bump of linear size b( This implies that the 
function TAg in (30) is of order 

TAk ,~ H 4 / 3 j 2 / 3 k ( 5  0 ) / 3  (42) 

This can be checked by inserting (42) into (30) and noting that 
integration over k > b t in the ( D -  1)-dimensional space yields (41), with 
d = D - 1 .  

Formula (40) provides an evaluation of higher order correlation 
functions. For instance, if r, r', r", r"  ~ b t, then 

< ( ~ Z i  + r  - -  6Z i )(  OZi + r' - -  ~Z i)(  OZi + r" - -  ~Z i)( ~Zi + r" - -  ~Z i ) > 

.~ ( ~/H,)( H,/g,) 7/3 

One can wonder if the identities of Sections 2 and 3 might become 
wrong because of the strong fluctuations (the effect known in spin glasses 
as replica symmetry breaking). The answer is no. At T =  0 the system has a 
nondegenerate ground state with probability 1. At Tve0 a few degrees of 
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freedom become "active," but the probability Pr(l) that a bump of size b t 
becomes "active" is small at low T according to (39): 

pT(l ) ~ (T/H,)(Ht/ j , )  1/3 ~ (T/Ho)(Ho/J)-I/3 b (2+d)I/3 

Thus, most of the points of the Bloch wall have a well-defined position 
at low T and are weakly affected by thermal fluctuations, although the 
second moment <z~) - <zi> 2 diverges for large sizes according to (15). 

6. UPPER A N D  LOWER B O U N D  FOR <z a> AT FINITE 
T E M P E R A T U R E  

In this section bounds for the finite-temperature correlation 

< z 2 } = [Tr(e -~ (Z) z2 ) /Tr (e - t~ ( z ) )  ] 

are evaluated (the bar indicates the configurational average over the ran- 
dom fields). This section is organized as follows: (1)notations, (2)upper 
bound for (z2}, (3)lower bound for <z2}, and (4)upper bound for 

Prob 
' } 

min ~ Xu ~< - m  
{O<~I<L , u = O  

where the latter is the probability that the minimum of all symmetric ran- 
dom walks of length L starting at Z~ Xu = 0 is dominated by - m ,  m >/0. 

The existence of those bounds for <z 2) implies 

< Z 2 > ~ ( Ho/g)  4/3 

which would also result from a straightforward argument fi la Imry and 
Ma.(4) 

6.1. Notat ion 

The discretized version of the toy model of Section 4 reads (z = l .a,  
/=0 ,  _+1, _+2,...) 

l 

~'~( l )=�89 al/2 ~ X u (43) 

where g is the strength of the harmonic potential >0; Ho is the strength of 
the random field; X, denotes Ising-type variables with values + 1, and a is 
the lattice constant. Introducing the parameter 

tl = �89 g/ Ho ) a 3/2 (44) 
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we find that the Hamiltonian becomes for positive l 

~ ( l ) =  Hoal/2 ( rl12 + i X~,) 
,u=0 

The summation in (45) is restricted to /~>0, 
S~-= l _co Xu drops out in the formula of (z2).  

(45) 

since the term with 

6.2. U p p e r  Bound fo r  (z 2) 

The correlation for l(z = l.a, l = 0, __. 1, _+ 2,...) reads 

[(+; + )J (12) = e-~"~(t)l 2 ~ e - ~ ( t )  (46) 
l =  co / / 1 \ l =  - - c o  

Omit the summation over negative and positive integers, respectively, in 
the denominator and notice that, since the X, are identically distributed, 
the random walks S t ~=o X~ and Zj_~o X. have the same distribution: 

)] ( /2)~<2 e ~Je(t)12 ~ e - ~ ( t )  (47) 
l / 1 \ l = 0  

Now introduce an arbitrary length scale L >> 1 and reorganize the sum- 
mations 

~ (m+l)L-- i  

= E 
/=0 m=0 l - - m L  

Setting 
(m+ 1)L-- 1 

Zm = ~ e ,~(t) (48) 
l =  m L  

taking the upper bound for l 2 on each interval [m .L, (m + 1). L],  and 
isolating the first term of the sum in the nominator, we arrive for a frozen 
configuration of random fields at 

t- (m+  1) 2 Z,. (49) 
(z2) < 2L2 E2-- oZm m=l E  0Z. 

The rhs of (49) grows if certain terms of the sums in the denominators are 
left out, 

( 1 2 ) ~ < 2 L 2 { 1 +  ~ ( m + l ) 2  Zm } (50) 
,, = 1 Zo -+--Z m 
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In the following it is shown that for a special choice of L the sum in (50) is 
dominated by a finite numerical constant and the desired scaling (z 2) 
(Ho/g) 4/3 is achieved. 

To this end, define 

em = min ~( I ) ,  Eo=  max ~ ( l )  (51) 
m L < ~ l < ( m + l ) L  O ~ l < L  

1 (which are still random variables depending on Zu=o X,). 
For every configuration of the random field we have the following 

alternative (see Fig. 2): 

1. ~m>Eo: Z m / ( Z o + Z m ) ~ e  ~(~,,, EO) 
(52) 

2. 8m~Eo: Z m / ( Z o + Z m ) ~ I  

and we have to calculate the corresponding probabilities, i.e., the weights 
of the related fluctuations of Jr(1) between the intervals [-0, L]  and 
[mL, (m + 1)L3. 

Averaging over the random field gives 

(12)<~2L2{1+ ~ (m+l)2(Xm+ Ym)} (53) 
m = l  

referring to case 1, 

xm = fodEo O(eo) Io ~ de ~ ( e ,  e o ) ~ - ~  (54) 

H 

E m 

E o 

I 
I 

] - �9 

L m (m+l)L 
. .-[ 
v 

Fig. 2. Realization of Jr(l) with ~'m > E0 (case i; see text). 
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and case 2, 

Ym:  f~  dg P(go) f~ oo dg ~m(g' g~ 

= f ?  dEe p(Eo) pm(Eo) 

where 

E =  ~m - -  Eo 

p(Eo) is the distribution of Eo, and 

( > 0 in case 1 ) 

(55) 

~m(E, Eo) = Prob{E~< ~ 'm  - -  Eo <~ E+ dE, E o fixed }/dE 

pm(Eo) = Prob{em ~< Eo, Eo fixed} 

Now we proceed to calculate upper bounds for Xm and Ym separately. 

Case 2. Upper bound for Ym" Split the Eo-integration into Ym = 
y~l) "-k Y~), with 

y(1 ) = ~A dEe p(Eo) pm(Eo) (56) 
m Jo 

y(2) = ~ dEe p(Eo) pm(Eo) (57) " JA 

A = �89 2 
q = �89 a 3/2 (58) 

Equation (56) reads 

Y~) = Prob{em < Eo < A } 

and, relaxing the restriction for Eo, 

Y~ ) <~ Prob { em < A } 

The inequality e,,, < A, i.e., 

rain [Hoa~/2(tll2+ ~ X~,)l<�89 
mL<~l<(m+ 1)L ,u=O 

822/51/1-2-2 
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implies 
l 

min ~ X~, <<. -�89 2 
mL<~l< (m+ 1)L #=0  

and 

Y~) ~< Prob ~ min 
~rnL <~l<(m+ l)L 

Using (105) of Section 6.4 results in 

Y~)~<2exp [ 

Since Pm ~< 1, Eq. (57) implies 

' } Z X~ <<. -�89 2 
/~=0 

m4t/2L3 ] 

8 7i-)J 

y(m2) ~< Prob {E o ~> �89 2 } 

i.e., the realizations have to satisfy 

Eo = max [Hoal/2(rll2+ i X.)]>~�89 
O<~I<L p~O 

which implies 

l 
max ~ X,>~�89 2-2) 

O<~I<L / l=0 

A consequence of reflection symmetry of the random walks is 

' } } Prob~ min ~ X.<~-u =Prob~max i Xz>~u 
~O<~I<L /~=0 ~O<~I<L #=0  

so that 
' } Y(m 2)~<Prob~ min Z Xz~<--�89 2-2) 

~.0~<I<L #= 0 

tl2L3 2)21 ~<2exp I -  T (m2- 

yielding with (59) 

1 r/aL3m~l)+exp [ 1 2 3 2 Ym~2{exp(-- ~ -~qL (m --2)2]} 

Schulz et  al. 

(59) 

(60) 

(61) 
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Case I. Upper bound for X m, Again, split the Eo-integration in (54) 
into Arm = X~ / + X~/, with 

;0' ;o X~ ) = dEe p(Eo) dEem(E, Eo) e -mE (62) 

foo X~ ) = dEe p(Eo) dE~m(E, Eo) e -mE (63) 

with abbreviations as in (58). 
Notice that e-~E~< 1 and ~ dEem(E, Eo)~< 1, so that (63) implies 

' } ~.V(2)m "~ "< P r o b .  max ~ X,  >~ �89 2 - 2) 2 
[O<~l<L ,u=0 

~< 2 exp[ - -  l r / 2L3(m2  - - 2 )  2 ] (64) 

with the same reasoning as for Y(m 2). 
NOW split the E-integration in (62) into X~ ) = a m q-bin, with 

a m fo'dEop(Eo)~ Ale = dEe ~E~,~(E, Eo) (65) 
~0 

bm= dEo p(Eo) dE e-PE~m(E, Eo) (66) 
/2 

Taking the lower bound for e me on [A/2, oe] and observing that all 
remaining probabilities are dominated by 1, we find that Eq. (66) results in 

b m ~ exp(-~Hoal /2r lL2m2)  (67) 

Now to am: use e-aE~< 1 

am~ dEop(Eo) Prob{O<E<A/2} 

f~ dEo O(Eo) Prob{Eo < ~,~ < E o + A/2} <~ 

i.e., 

am ~< Prob{em ~< 3/2A } 

Analogously to Y~I), one gets 

am ~ 2 exp ( - -  ~---~ rl2L3 ~ +  l ) (68) 
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Equations (64), (67), and (68) imply for Xm, 

Xm ~< 2 exp[ --1q2L3(m2 -- 2) 2 ] 

+ exp( -fl�88 2) + 2 exp[--9rl2L3(m4/(m + 1))] (69) 

Relations (61) and (69) yield an upper bound for the ratio 

[Zrn/(Z 0 "t- Zm) ] ~ 4 exp[ - ~r/2L3(m 2 - 2) 2 ] -k- 4 exp[ - ~rl2L3(m4/(m + 1 ))] 

+ exp( - �88 2) 
Using 

(m 2 - 2) 2/> lm4 

m4/(m + 1) >~ �89 3 t 
m~>l 

one gets 

m 4 m 3 

m ~ l  

+ exp ( -  1 1/2 2 2 \ 7 )  . m  (70/ 

The choice for the length scale L 

~/2L3 = 1 (71) 

implies 

( a L  ) ll2 = ( 2 H o / g  ) 1/3 

L 2 = q 4/3 = (2Ho/g)4/3 a 2 (72) 

( / 2 )  <<. a 2f(g, Ho, T)(Ho/g) 4/3 (73) 

with { (m4) 
f(g, Ho, r)=4.21/3 1+ ( r e + l )  2 4exp  - - ~  + 4 e x p  - - i 6  

m ~ l  

[ _  1 Ho(Ho)l/3]~'~ (74) + exp Am2 --~- \ ~ g  j JJJ 

The infinite sums in (74) do converge provided Ho > 0 and g, T <  co. The 
choice of L is also compatible with the former assumption that L >> 1, since 
L ~ a - i .  The function f of (74) has the scaling form 

f(g,  Ho, T) = c + jTEHo/T, (Ho/g) 4/3 ] (75) 
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with 

c=4"21/3 { 

-~ 474.1 

19 

I(m4) ( m3)]} 
1 + 4  ~, (m+l )2  exp -~- +exp ---~" 

m = l  

(76) 

jT(X, y)=4"21/3 ~ (m+ 1)2exp(--�89 -b'3) 
m = l  

The regime of interest is the one of strong random fields g,~ H 0 and low 
temperatures. The choice, e.g., 

HolT> 1, Ho/4g > 8 (77) 

leads to the upper bound for )7 

f~<4-2 v3 ~ ( m + l ) Z e x p ( - m  2)~8.3 
m = l  

which means 

( l  z) <~ (Ho/g) 4/3 a -2 -482.4 

subject to the conditions of (77). 

6.3. L o w e r  Bound for  (z  2) 

Introduce two length scales L~ and L2LI and define 

e~ = min ~(1), E2 = max ~ ( I )  
1ll < LI  L2 ~< l <  L 2 + L 1 

(78) 

Now consider the probability Pl that fluctuations of J((~(l) between the two 
intervals [ - L I ,  +L1] and [-L2, Lz+L1]  are at least of size E, i.e. (see 
also Fig. 3) 

Pl = Prob{ min ~f(l) > - E  and max ~f~(l) < -2E} 
ill < LI  L 2 ~ l < L 2 + LI 

= Pl(L1, L2, E), E> 0 (79) 

With the help of pl we can construct a lower bound for ( l  2) such as 

(12) ~ }plL~ (80) 
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-E 

-2E 

H 

t 

'XX L2 L2~LI ~ t 

E2\ i"" 

I i 

Fig. 3. Realization of d#(l) with el > -E  and E 2 < 2E (for definitions of el and E2 see 
text). 

Condition (80) is reached by dropping the summation over Ill < L1, taking 
L 2 instead of l= in the nominator of (l 2) [see (46)], and noticing that 

L2 + LI 

2 ~ e-#~eu)~>2 ~ e -#~(t) 
Ill/> LI l =  L2 

~> 2L l e -#  e2 

>>, 2L1 e2#E with probability p 

~> 2LI e-#~l 

~> ~ e #~(l) (81) 
1/1 < LI 

The remaining task is to show that Pl is not zero for a choice of L~, L2, 
and E that yields the desired scaling behaviour of ( l=) .  

To this end, define 

A(L; w, u) = Prob{ogY(L) = - u  and min ~f(l)  > - w  } (82a) 
O<~I<L 

(i.e., A = 0  in case of - u <  -w) ,  and 

B(L;w)=Prob(r Ho am ~ Xu<w} 
, u = 0  

/ 1 = 0  

(82b) 

= Y(L; - u), because of reflection symmetry (82c) 
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Now look for an event included in Pl,  since its probability is a lower 
bound for pl .  Such an event can be constructed as follows: (i) give a 
sufficient condition to satisfy E 2 ~  - 2 E ;  (ii)impose e I > - E  with fixed 
~ ( L ~ ) ;  (iii)give the condition that (i) and (ii) can be satisfied 
simultaneously. 

Condition (i) is implied by 

~'r = - 3 E - -  v, v > 0 

together with 

m a x  
0 ~ < I < L I  

The corresponding 
Condition (ii) reads 

l 

Ho a~/2 ~ X L : + ~ < E + v - H o a l / 2 q [ ( L z + L 1 ) 2 - L  2] (83) 
/ ~ = 0  

distribution is B(LI; E+ v -  Hoal/2q(2LiL2 + L21)). 

min ~ f ( l ) > - E  and ~r - u  (84) 
0 ~ < / < L 1  

with distribution A(L1;E,u). We are left to get from J t t~(L~)=-u  to 
Jg(L2) = - 3 E - v .  Condition (iii) is: The random walk has to travel the 
difference o ' ~ ( L 2 )  - -  ~ t ~  = - 3 E -  v + u in L2 - L1 steps, i.e., 

L2 -- L i  

-H o  a~/2 
, u = O  

X c ~ + ~ = 3 E + v - u + H o a m ~ l ( L ~ - L 2 )  (85) 

with distribution Y(L 2 -  L~; 3 E +  v -  u + Hoal/2q(L~-- L~)). Conditions 
(i)-(iii) imply the event for Px: 

Since 

Pl ~ du A(L1; E, u) 
- -oo  

x dv Y ( L 2 - L ~ ; 3 E + v - u + H o a l / 2 q ( L ~ - L ~ ) )  

x B(LI; E+ v - Hoal/2rl(2L1L2 + L~)) (86) 

l L 1 

min Ho al/2 ~ X ~ > - E  and Ho al/2 ~ X u = - u - H o a l / 2 ~ L ~  
O ~ < / < L I  I ~ = 0  . u = O  

with distribution Ao(L 1 ; E, u + Hoa1/211L~) implies the event 

min ~'~(/) > - E  and ~ ( L l ) =  --u 
O ~ < / < L  1 
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we have 

f 
+ o o  

Pl >~ du Ao(L1; E, u + Hoal/2tl L2)  
co 

x dv Y ( L 2 - L 1 ;  3 E + v - u - H o a l / 2 t l L ~ + H o a l / 2 r l L ~ )  

x B(L1;  E +  v -- 2Hoal/2rlL1L2 - Hoal /2qL~) (87) 

Set u ' =  u + H o a m r l L ~  and relax the - u '  in Y in inequality (87), which 
means that the random walk has to travel even a larger distance between 
L1 and L2; one gets 

f O oo Pl >~ du Ao(L1; E, u) 

x dv Y ( L 2 - L 1 ; 3 E + v + H o a l / Z r l L ~ )  

• B(L1;  E +  v - 2Hoal /2 t lL1L2 - Hoal/2tl L2) (88) 

Also, the v in B of (88) can be set to zero to get the rhs smaller, i.e., the 
random walk reaches at most - 2 E - v  in the interval [L2, L 2 + L1]. Since 
the random walks start at the origin, the second argument of B is restricted 
to be positive and should be of the order of Li/2: 

E - 2Hoal/ZqL1 L2 - Hoal/ZrlL~ = ,~Hoal/ZL]/2, 5[ > 0 (89) 

Setting 

we have 

3E = Hoal/2qL~ (90) 

Pl >1 du A o ( L  1 �9 !r4 ,~l/2~lr 2 lg) dip Y ( L  2 - L 1 ; v + 2Hoal/2rlL 2) 
3 J ~ 0  ~ r l ~  2 , 

x B(L1;  �89 - 2Hoal/2rlL1L2 - Hoal/2rlL 2) (91) 

Equation (90) eliminates the parameter  E and (89) provides us with a 
relation between L1 and L2 so that only one length scale is left. 

Using (90), one finds for Eq. (89) 

L2 z - 6 L I L  2 - 3L~ - 3)~/7 iLl~2 = 0 
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with the positive solution 

l ] q  1 1 3/211/2] L z = 3 L l [ 1  + (4+~ -- -1 , J 

The contribution from B is 

B( LI ; 2Hoal/2 L l/2) 

I ' } = Prob max Ho al/2 ~ X. < Hoa1/22Ll/2 
~O</<L1 

= l - P r o b ~  max ~ X~>~2LI/2} 
I- 0 <:l< LI ,u=O 

~> 1 -  2 exp ( -  2@1 22L1) (using Section 6.4) 

(92) 

(93) 

Relation (93) yields a lower bound for 2 since 

B > 0 ,  i.e., 2 > (2 in 2)1/2 _~ 1.18 (94) 

To get (92) independent of any parameter, the choice for the remaining 
length scale 

qL3/2= 1.0333 (95) 

is implied. Choosing a certain 2, L 1 is determined as 

L1 = 0.04L2 for 2 = 1.3 (96) 
i.e., 

B > l - - 2 e  o.85 =0.14 (97) 

The theory of random walks implies 

f f  dv - L~; v + 2Hoal/2~iL2 ) ~- 0.0174 (98) Y(L2 

The contribution from the first interval reads 

fo~~ Ao(L I. 1,,71/2L/ 1-2 U) 

= Prob ~ rain 
~O~<I<LI 

= Prob ~ min 
(O~</<LI 

, Ll } 
Ho al/2 ~ X~,> _!,~t/2r4 ~r~ 3" ~tO,/L, 2 and ~ X~<O 

#=0 ~t=O 

l LI t X~>-1.72L~/2 and ~ X~<O 
,u=O p=O 
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Splitting c, 52/2:0 X/2 ~< 0 into disjoint events 

implies 

=Prob  X/2~<O and min ~ X/2> -1.72LI/2 
/2 0 0 ~ I < L I  /2=0 

+Prob  X,~<O and min ~ X~< -1.72LI/2 
"-/2=0 O ~ I < L 1  /2=0 

Prob Xu<<.O and min ~ X/2> -1.72L~/2 
/2 0 0~<I<LI /2=0 

' } ~>�89  min 2 X/2>-l'72LI/2 
{O~</<LI  # = 0  

~> �89 2 exp[ - (1/2L~)(1.72L~/2) 2] 

~> �89 2 e x p [ -  (1.722/2)] (99) 

The inequality (97) and those following it imply for pl 

Pl > 0.14 x 0.0174 x 0.046 > 10 - 4  (100) 

and for the correlation function 

(I 2) > 3a -2 • 10 -6 (101) 

Together with the upper bound for ( l  2) derived in the preceding section, 
we have the result that for low temperature and strong random field the 
correlation scales like (z = l-a) 

( Z 2 ) ~ ( Ho/g ) 4/3 (102) 

T~' o X - ~ < - m }  6.4. Upper Bound for  Prob{mino~</<, ,= 

In this section an upper bound for the probability is constructed that 
the minimum of all symmetric random walks of length L does not exceed 
- m  (m~>0). Define 
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#=0 

= Po(L; - r) 

(103) 

Now consider 

l L } 
Q o ( L ; r , m ) - - P r o b  min ~ X ~ < - m a n d  ~ Y ~ = r  

[-0~</~< L ,u =0 ,u=O 

with (a) m < 0 or r <<. - m :  in this case Qo(L; r, m) = Po(L; r), since the con- 
ditions do not represent restrictions to the random walks; or (b) m >~ 0 a n d  

r > - m :  to every random walk with endpoint (L, r) and minimum ~< - m  
there is exactly a corresponding one starting at - 2 m  and reaching the 
same endpoint: a random walk satisfying (b) hits the ( - m )  line at least 
once, say at l = lo for the first time. Reflect the first part of this random 
walk as indicated in Fig. 4 and one ends up with a random walk traveling 
the distance 2m + r in L steps w i t h o u t  any further restriction. This construc- 
tion is unique. Since the starting value of the random walk is irrelevant to 
its probability, one gets 

(b) Qo(L; r, m) = Po(L; 2m + r) 

-m 

-2m 

t 

.t=O 

I0 
I 
I 

f . j j J ~ . 1 V  

2m+r 

Fig. 4. Random walk with mino~<,<LY~=oXu~< --m and Y~=oXu=r. 



26 Schulz et  al. 

Because (a) and (b) are disjoint events, 

, } +L 
Prob min 2 X ~ - m  = 2 Q0(L;r,m) 

~ O ~ I ~ L  # = 0  r =  - - L  

= Z Po(L;r) + Z 
r<~ - - m  r >  m 

~<2 ~ P0(L ;m+r )  
r > ~ 0  

Using Stirling's formula, we obtain 

Po(L; 2m + r) 

(104) 

P r o b  rain • Xt, ~ - m  

~< 2 (g ~)-1/2 r~>~O exp ( 

( m3;o ~ ~< 2~- 1/2 exp - 2L dr exp 

since m, r/> 0 and provided that L ~> 1. 

(m+r )  2'] 

2L J 

(lO5) 

ACKNOWLEDGMENT 

The authors are grateful to T. Nattermann for helpful discussions and 
comments. 

NOTE ADDED IN PROOF 

The inequalities derived in Section 6 are sufficient to prove (102) and 
thus close a controversy which has appeared even in the case of the (d= 0) 
toy-model of Section 4. However these inequalities are too loose to give a 
useful information for numerical calculations. The prefactor of the right 
hand side of (105) is certainly too generous. On the other hand, the lower 
bound (101) can be improved if - 2 E  is replaced by - E  in the definition 
(79) of pl. 
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